

Identifying suitable locations for offshore wind through GIS analysis; a regional case study

Cedric Muscat, Hugo Putuhena, Susan Gourvenec RAEng Centre of Excellence for Intelligent & Resilient Ocean Engineering (IROE) Southampton Marine and Maritime Institution, UK University of Southampton, UK

THALASSA 2024 - Marine Sciences Conference 28 and 29 May 2024, Larnaka Cyprus

Introduction

TELLIGENT & RESILIENT CEAN ENGINEERING

- Transition to renewable energy crucial for reducing fossil fuel dependency
- Offshore wind (OW) rapidly growing sector key to meet net-zero targets globally
- European Union targets 60GW of OW by 2030 and 340GW by 2050 (European Commission, 2023)
- Mediterranean emerging as a key player in renewable energy with 30+ OW projects planned

 $Offshore\,wind\,investments\,in\,Europe\,2010\mathchar`2020\mathchar`WindEurope$

Map of planned OW farms in the Med: Plan Bleu

1

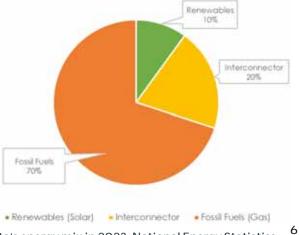
Innovation in technology


- Advancements in technology: floating OW beyond 60m suitable for Mediterranean's deep water
- Increase in blade size and power output over the years
- Scale of OW balanced with protection of ocean ecology and heritage sites
- Sharing marine space: co-existence with other activities (ecological and heritage assets)

Growing size of wind turbines Windpower monthly

Different platforms for OW EEW GROUP

Annual density of cargo vessels in the Mediterranean WWF

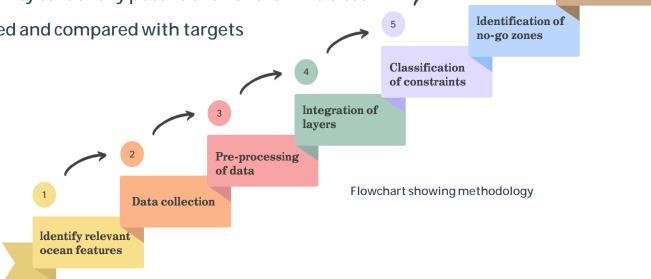


Regional application of method: Malta context

- Malta, centrally located in the Mediterranean, has a potential Exclusive Economic Zone (EEZ) over 70,000 sq.km (200x its land area)
- Producing currently only 10% of its energy from renewables, Malta targets net zero by 2050, making offshore wind a critical solution given its limited land space

Malta's EEZ: MarineRegions

Malta's energy mix in 2023: National Energy Statistics

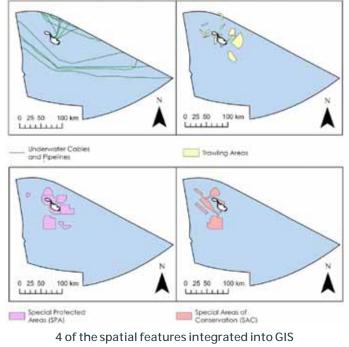


Identify suitable locations by

constraints

Methodology outline

- Geographic Information System (GIS) method to analyse spatial constraints from Putuhena et al
- Process integrated various spatial layers, including metocean conditions, geoscience, ecological, and anthropogenic features into a binary and non-binary mask
- GIS map split into a grid to count and compare different spatial constraints
- Areas ranked by suitability to identify potential offshore wind sites
- Power output estimated and compared with targets

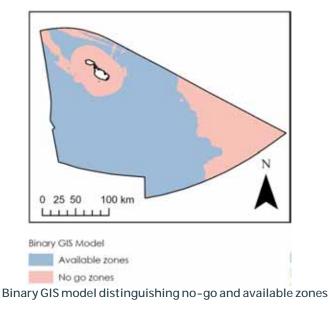


Malta case study

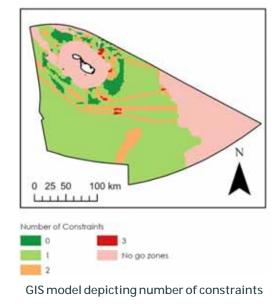
- Method applied to identify suitable locations for offshore wind within Malta's EEZ
- In the Malta case study 10 spatial constraints were identified
- Data was collected from several European and national databases
- Using GIS these constraints were systematically integrated to map
- No-go areas and potential zones for OW identified

Anthropogenic	Environmental & Geological
Special Areas of Conservation	Wind speed 100m asl
Special Protection Areas	Geogenic reefs
Vessel traffic density	Bathymetry
Cables & pipelines	Pre-quaternary faults
Trawling areas	Seabed substrate folk 5

10 spatial layers used for Malta

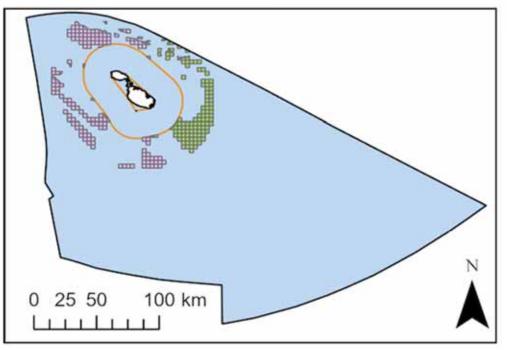

UTELLIGENT & RESILIENT CEAN ENGINEERING

7


Classification of constraints used

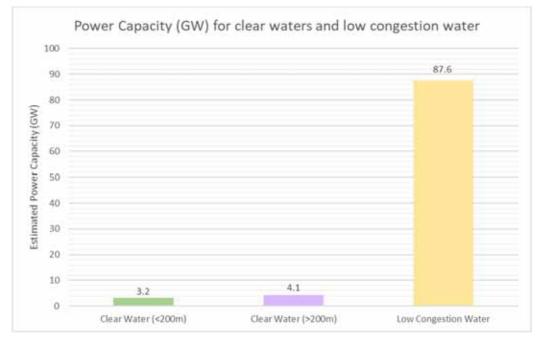
- Binary method used to identify no-go zones
 - Average wind speed below 5 m/s (minimum operational speed)
 - Water depth beyond 1000m
 - Average daily vessel traffic above 2 (although ships could pass through)
 - Territorial water (state legislation)

- Non-binary method to list number of constraints
 - Marine Protected Areas
 - Cables & pipelines
 - Pre-Quaternary faults
 - Rocks & boulders
 - Trawling areas
 - Beyond 25 nautical miles fom shore


8

Results and analysis

- GIS analysis identifies over 40% of Malta's waters as suitable for OW, primarily in deeper waters (>60m) requiring floating technologies
- Utilising a tenth of this space could produce
 7 times Malta's peak energy demand
- Clear water identified as suitable area without constraints
- Low congestion water identified as suitable area with only 1 constraint



Potential power output

- Conservative estimate of 3 MW per sq km, considering wind speeds and height
- From the identified suitable areas, the estimated power output is several times Malta's peak energy demand of 1GW
- Clear water areas (<200m depth) show a potential power capacity of 3.2 GW
- Total potential in clear water areas (all depths) rises to 7.3 GW
- Considering also low congestion water with 1 constraint potential reaches 87.6 GW

Estimated power capacity

NTELLIGENT & RESILIENT DCEAN ENGINEERING

Opportunities identified

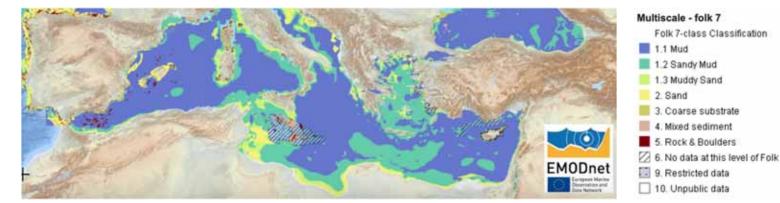
- Energy surplus provides opportunity for Malta to meet its domestic energy needs and export surplus energy enhancing regional energy connectivity
- Exploration of green hydrogen production using surplus energy from OW as a form of energy storage could mitigate intermittency
- Challenges include deep water, distance from shore and rocky seabeds pose cost considerations
- Possibility of combining floating solar panels between installations to maximise output

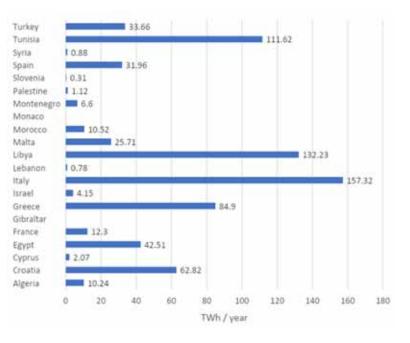
Combined floating solar and offshore wind farm in Shandong coast : SPIC

Concept hydrgen production from offshore wind: Ramboll

Possible future works

- Scarcity of detailed sediment data necessary for precise geological assessment
- Sediment type and thickness required to choose appropriate anchorage system as some systems require 30m+ of softer stratum
- Further studies are needed to explore advanced anchoring technologies for deep and rocky seabeds to reduce installation costs
- Conduct long-term environmental impact assessments of OW farms




Figure showing incomplete sediment data: EMODnet

Broader Mediterranean application

- Application of the GIS method in Malta demonstrates potential for adaptation to other Mediterranean countries with similar marine characteristics
- Countries in the region can leverage this approach to explore their OW potential, tailored to meet unique regional spatial and environmental challenges
- Approach promotes a strategic and environmentally sensitive development of OW, contributing to regional energy security and sustainability goals

Theoretical max. annual OW production for Mediterranean countries Source: Pantusa et al 2019

Conclusion and Q&A

- Project Overview
 - Demonstrate the effective use of GIS method to identify suitable locations for offshore wind
 - Approach used for Malta's case study can be applied across the Mediterranean or other regions
- Key opportunities
 - Significant potential for Mediterranean to harness offshore wind energy
 - Aligns with local and global sustainability goals encouraging renewable energy implementation
- Innovative integrations
 - Potential to integrate floating solar PV systems with offshore wind farms
 - Surplus energy could enable green hydrogen production

Southampton Marine and Maritime Institute

https://www.southampton.ac.uk/iroe